A Bayesian framework for exploring the early impact history of the asteroid belt with meteorite thermochronology

Graham H. Edwards^{1,2}, C. Brenhin Keller¹, Cameron Stewart¹, Elisabeth R. Newton²

{graham.h.edwards@dartmouth.edu} ¹ Earth Sciences / ² Physics & Astronomy, Dartmouth College

Background

Planetary migrations in the early solar system would have caused dynamical instabilities that enhanced collisions in the nascent asteroid belt.

The mineral thermochronologic records of asteroidal meteorites may record energetic bombardment events.

Meteorite thermochronology [Mojzsis+ 2019, ApJ] and recent dynamical models [Ribeiro de Sousa+ 2020, *Icarus*] favor early orbital reorganizations within the first ca. 100 Ma of solar system history.

Yet, prior studies do not resolve a precise estimate of the date of the postulated migration event(s).

Approach

We aim to estimate the timescales of dynamical excitation and enhanced impactor flux in the early solar system (>4000 Ma) from the chondrite ⁴⁰Ar-³⁹Ar thermochronologic record with a Bayesian statistical approach.

We simulate asteroidal thermal histories and ⁴⁰Ar closure with an analytical conductive cooling code [after Hevey & Sanders 2006, MaPS] and a model that simulates reheating by impactor fluxes.

The thermochronologic code is coupled to a Markov chain Monte Carlo inversion that stochastically varies model parameters and calculates the likelihood that the distribution of chondrite ⁴⁰Ar-³⁹Ar ages [adapted from database of Mojzsis+ 2019] is drawn from the distribution of model-predicted ages.

Synthesis & Future Work

Asteroid thermal models with impact reheating histories better reproduce the ⁴⁰Ar-³⁹Ar age distribution of chondrites than unperturbed histories.

Earth Sciences

DARTMOUTH

We report posterior estimates for the timing, intensity, and duration of two episodes of enhanced impactor flux in the first 200 Ma of the solar system.

Our results suggest that the primordial impactor flux was larger in magnitude and duration than a ca. 4510 Ma bombardment.

Future work will **1**. refine these preliminary estimates with a more comprehensive ⁴⁰Ar-³⁹Ar age database and **2.** explore the sensitivity of the system to model impactor sizes and the shape of the reheating zone.

1. Simple thermal model and impact reheating code

4200

Graham

(he/him)

and *e*-folding time, τ .

4100

-460

initial warm-up

(burn-in)

Figure 1 We can predict the thermal history and timing of Ar closure in a radiogenically heated and conductively cooled body, for a

The Metropolis algorithm inversion explores the likelihood space calculated from thermochronologic model outputs and converges on distributions that estimate the posterior for each parameter.

Solar age (i.e. first CAls)	4567.3 Ma
Initial ²⁶ AI/ ²⁷ AI	$5.23 \cdot 10^{-5}$
Midplane temperature	log $\mathcal{N}(5.35,0.22)\sim210$ K
Asteroid parameters	
Time of accretion	log $\mathcal{N}(0.700, 0.005) \sim 2$ Ma after CAIs
Radius	log $\mathcal{N}(11.9,0.04) \sim 150$ km
AI abundance	log $\mathcal{N}(extsf{-4.6}, extsf{0.01})\sim 1.0$ wt $\%$
Material parameters	
Bulk density	log $\mathcal{N}(8.11, 0.0025) \sim 3300~^{kg}/m^{_3}$
Specific heat capacity	log $\mathcal{N}(6.74, 0.09) \sim 850~^{J/kg \cdot K}$
Thermal diffusivity	log $\mathcal{N}(0.33, 0.40) \sim 1.4$ $^{W}/_{m\cdotK}$
Ar closure temperature	$500\pm75~{ m K}$
Impactor flux parameters	
Start time	$\mathcal{U}[0,t_{max}]$ (Ma after CAIs)
primordial	0 Ma after CAIs
Initial flux	$\mathcal{U}[0,30] \; (Ma^{-1})$
e-folding time	$\mathcal{U}[0,600]$ (Ma)

[2]

[3]

[4-9]

[5-9]

[10]

[11]

[12]

[13-15]

[16,17]

-500

-550

-600

log-likelihood

[1] Connelly+, 2012, Science. [2] Jacobsen+, 2008, EPSL. [3] Woolum & Cassen, 1999, MaPS. [4] Sugiura & Fujiya, 2014, MaPS. [5] Henke+, 2013, Icarus. [6] Blackburn+, 2017, GCA. [7] Gail & Trieloff, 2019, A&A. [8] Edwards & Blackburn, 2020, Sci Adv. [9] Trieloff+, 2022, Icarus. [10] Lodders & Fegley, 1998, Planetary Scientists's Companion. [11] Flynn+, 2018, Geochemistry. [12] Wach+, 2013, Met Soc Abstract. [13] Yomogida & Matsui, 1983, JGR. [14] Opeil+, 2010, Icarus. [15] Opeil+, 2012, MaPS. [16] Turner+, 1978, LPSC Proc. [17] Bogard & Garrison, 2009, GCA.

